
Relativistic electron scattering from a two-centre potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1978 J. Phys. A: Math. Gen. 11 1257

(http://iopscience.iop.org/0305-4470/11/7/014)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 18:54

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/11/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 11, No. 7, 1978. Printed in Great Britain. @ 1978 

Relativistic electron scattering from a two-centre potential 
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8 Department of Physics, Himachal Pradesh University, Simla 171005, India 

Received 9 May 1977, in final form 15 November 1977 

Abstract. A method of studying the scattering of a high-energy electron from a two-centre 
Coulomb potential is presented. The Dirac equation for the problem is solved by a 
generalised form of the Sommerfeld-Maue approximation, using a spheroidal phase shift 
analysis at the final stage. For a screened potential, the total cross section has been 
calculated and averaged over a random orientation of the axes of the two-centre systems. 
For a long-range potential, the differential cross section can be obtained after the 
averaging is done numerically. The spheroidal phase shifts are obtained by comparing the 
asymptotic behaviour of the radial equation with that of the central Coulomb radial 
equation and using a generalised JWKB method. The method is studied by considering the 
simple case of two fixed point charges. Some results, for this case, are also presented. 

1. Introduction 

The scattering of a charged particle from a two-centre potential is of considerable 
physical interest. The process describes a number of well known problems of molecu- 
lar, nuclear, and subnuclear physics. In a series of papers, Li (1971, 1972, 1973) has 
considered some of these problems. The scattering of low-energy electrons from a 
homonuclear molecule is an important problem of molecular physics. The 
Schrodinger equation describing this process is separable in spheroidal coordinates 
and the scattering cross section can be given in terms of spheroidal phase shifts. In 
recent years there has been a renewal of interest in problems with two-centre 
potentials. Muller et a! (1973) have studied the bound states of an electron in the field 
of two Coulomb centres. They calculated the binding energies of a Dirac particle by a 
numerical method. The scattering problem with a relativistic electron has, however, 
not yet been studied. The difficulties involved can be seen by comparison with the 
spherical case. With a spherical potential, the Dirac equation gives a set of two linked 
radial equations and a phase shift analysis can still be made. The method has been 
used in the determination of the charge distribution in the nuclei, see Yennie et al 
(1954). However, with a two-centre potential, the Dirac equation is not at all separ- 
able. Even an approximate solution of the scattering problem will, therefore, be 
useful. The purpose of the present paper is to present an approximation method of 
studying this problem. Applications of this method to a number of physical problems 
will be presented elsewhere. We shall apply a generalised form (Mukherjee and 
Majumdar 1965) of the Sommerfeld-Maue approximation so that the solution of the 
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Dirac equation can be constructed from that of a Schrodinger-like equation. The 
latter is separable in spheroidal coordinates for a class of potentials, and hence permits 
a spheroidal phase shift analysis. The relativistic scattering cross section is then 
obtained in terms of these spheroidal phase shifts. The phase shifts are determined by 
a semiclassical approximation. The method has been studied by considering the 
simple case of two fixed point charges. 

For the two-centre problem it is convenient to work with the prolate spheroidal 
coordinates given by 

where R is the distance between the two centres, r, and r b  are the distances of the field 
point r from the two centres, and 4 is the azimuthal angle which the plane of R and r 
makes with the plane of R and the z axis. We note that 

x = ; R J ( e 2 -   COS 4, 
y = t R  J(f2 - 1)(1- 7’) sin 4, 
z = $R&. 

The scheme of presentation is as follows. In § 2 we have solved the Dirac equation 
with a two-centre Coulomb potential by the Sommerfeld-Maue approximation. In § 3 
we have considered a screened Coulomb potential and have obtained an expression 
for the total scattering cross section, averaged over a random distribution of the target 
axes. In § 4 we have given an outline of the generalised JWKB method, while the next 
two sections give an account of the application of this method to the present problem. 
Our conclusions are summarised in 0 7 .  

2. Sommerfeld-Maue approximation for a two-centre potential 

We consider the elastic scattering of a Dirac particle with an initial momentum P and 
energy E from a two-centre potential @. To apply the Sommerfeld-Maue approxima- 
tion, one must obtain i,bo from the equation 

@2+P2+2EV)*13=0, (2.1) 
where V = e @ .  The solution of the Dirac equation, in this approximation (Mukherjee 
and Majumdar 1965) is then given by 

* = * O + * l ,  (2.2) 

where the matrix A is to be chosen so as to normalise the incident wave, which is 
contained entirely in the function $0. Thus is a correction to the scattered part 
only. The accuracy of this approximation has been studied by Bethe and Maximon 
(1954). In the case of a point charge scatterer, the exact scattering cross section of the 
Dirac equation differs from the approximate one only by terms of order a 2 / e  In E ,  with 
a = CYZ, where a is the fine structure constant and 2 is the charge of the target in units 
of e.  The approximation has been used extensively in the study of multiple scattering 
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of electrons and positrons (Mukherjee 1967, 1968, 1973) and also in calculating the 
Coulomb corrections to various electrodynamic processes (Bethe and Maximon 
1954). The two-centre problem presents another case where the approximation can 
be applied with advantage. 

For the solution of (2.1) we assume the form 

$,,(r, P) = U ( P )  eiP.'f(r, P), (2.4) 

where V ( P )  is a plane wave Dirac spinor and f (r ,  P) is a slowly varying function of r 
as compared with eiP*'. It then follows that 

A =  - a .  P / ~ E ,  

and the solution rl, is given by 

1 1 
$ = e'"'( f ( r ,  P) - 2, a . Vf(r ,  P) u(P).  

We now introduce a prolate spheroidal system fixed with the ta 
written as 

(2.6) 

t. Equation (2.1) is 

a a  a 1 1 a2 R 2  
- 1)-+ - (1 - 7 2 ) -  + (2 ---I) 2 + - (P2 + 2EV)(f2 - $0 = 0.  a t  a7  ag 5 - 1  1-77 a4 4 

in the asymptotic region 

where c = tPR. If the Coulomb potential is not screened, there is also a logarithmic 
phase factor. However, this factor will be of no consequence in the subsequent 
developments and will be omitted. It then follows from (2.4) and (2.8) that 

where p l , p 2 , p 3  are the Cartesian components of P in the target-fixed frame. To 
determine the function in (2.6) we note that 

Using (2.10) we obtain 

(2.10) 

(2.1 1) 
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where A4 is the Hermitian matrix 

0 C A - i B \  i o  

0 
M-j 1 0  

2~ C A - i B  0 
\ A + i B  -C 0 

with 

(2.12) 

A =PJ1-q2 COS 4 -PI, 
2 B =PJ1 - q  sin 4 - p ~ ~  

c = Pq -p3. 

(2.13) 

In obtaining (2.1 l), we neglected the term VF, which is small compared with those 
retained which are of order PF. This is consistent with the assumption that f (r ,  P) is a 
slowly varying function of r as compared with eiP'r for large P. The approximation is, 
therefore, valid for P >> 1. Also, the terms contributed by the logarithmic phase factor, 
if present, on differentiation, are neglected as they vanish as 1/5'. 
the scattered current density is given by 

) ?  

P2 A' + B' + c2 + AP, + B P ~  + cp3 
2 

IJscattl "' 4 ;  PI?( 1 + &2 E 

The magnitude of 

(2.14) 

(2.15) 

where w, a are the polar and the azimuthal angles of the vector P in the target-fixed 
frame. For simplicity, we have put E = P in (2.15). In the asymptotic region, r21Jscattl 
will give the differential scattering cross section in the direction given by angles 
(c0s-l q, 4 )  measured about the axis of symmetry of the target when the incident 
momentum P is in the direction ( w , a ) .  The problem, therefore, reduces to the 
calculation of F(q, 4 ;  IPI, U ,  a). This may be obtained by solving the equation (2.1), 
subject to the boundary condition (2.8), which is a simpler problem. 

Equation (2.1) is separable in spheroidal coordinates if the potential is of the form: 

(2.16) 

This form, though restrictive, includes a large class of physically interesting cases, 
including the case of two fixed point charges. If the point charges are of equal strength, 
we have, in addition, 

W ( q )  = 0. (2.17) 

In this paper, we shall consider a potential which satisfies both (2.16) and (2.17). The 
solution of (2.1) is then well known, namely 

~o - ~ , i  (c, t ) S m i  (c, 7) e"', (2.18) 
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where R and S satisfy the following equations: 

(2.20) 

where A m I ( c )  is the separation constant and 1 is an ordering integer, 1 = 0, 1, 2, . . . . 
The angle function Sml is independent of the potential because of the particular choice 
of the potential. The properties of the spheroidal functions and the separation 
constant can be found in Stratton et a1 (1956), Flammer (1957), Mott and Massey 
(1965), and Morse and Feshbach (1953). The standard spheroidal phase shift analysis 
can now be used (see, for example, Mott and Massey 1965) to obtain 

F(77, 4 ;  lPl, cy) 

(2.21) 

(2.22) 

6 is the Kronecker delta function, and um1 are the spheroidal phase shifts. Using (2.15) 
one can now express the relativistic differential scattering cross section in terms of 
these phase shifts. We are, however, interested in expressing the differential cross 
section in terms of the angles(@, @)measured in the laboratory frame, with P along its 
z direction. The connection between these two sets of angles, in the asymptotic 
region, is easily obtained from the addition theorem of cosine of angles. Thus to 
average over a random distribution of the target orientations, it is necessary to write 
F ( 7 , 4 ;  lPl, w, a )  as F(@,  a; IPI, w ,  p) ,  where (0, p )  give the orientation of the target 
in the laboratory frame and then average the differential cross section over the range 
of (w,  p). This can be done numerically. 

If the potential is screened, as in the case of diatomic molecules, one can also 
calculate the total cross section. The process of averaging is much simpler here, as will 
be shown in the next section. 

3. Averaged total cross section 

The total cross section can also be obtained by integrating over the range of q, 4 in the 
asymptotic region, i.e. 
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To integrate over q, we make use of the expansion 

where 2' indicates that the summation is over even values of n, if ( I  - m )  is even, and 
over odd values of n ,  if ( I  - m )  is odd. The appearance of different P K + , ( q )  in the 
angle function is indicative of the fact that in the present problem only the component 
of the angular momentum in the direction of the symmetry axis of the target is 
conserved. The expansion (3.2) is useful, because the series converges rapidly (even 
for c = 8, one needs only about ten terms, the next coefficient dZ1(810, 1 )  being as small 
as 8.96 x lo-'). Using the recurrence relations of P;+,(q), we get by a lengthy but 
straightforward calculation: 

1 
2 m  +2n  -1  d,  (c Im - 1, If))] d,+z(clm - 1, U- 1 

( 2 m  + 2 n  + 3  

(3.3) 

To average over a random distribution of the target axes, one requires almost identical 
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manipulations. The final result is given by 

where 

(3.5) 

The cross section is thus expressed in terms of the spheroidal phase shifts and the 
expansion coefficients d,. Although the expression (3.4) involves multiple sum- 
mations, its evaluation is not difficult if c < 1. The coefficients d,(clm, I )  fall of f  
rapidly as n increases and only a few of them will be required for the calculations. The 
method of calculating the phase shifts will be our concern in the following sections. 

4. A semiclassical method for the phase shifts 

Although the averaged differential cross section in the case of an unscreened potential 
can be obtained only numerically, as has been pointed out in 0 2, a direct numerical 
calculation for the phase shifts may not be very convenient. The solution of the radial 
equation, even in the absence of a potential, is not a simple function. Moreover, for a 
given value of I ,  one has 1 + 1 independent radial equations. It will, therefore, be 
advantageous to look for a suitable approximation method to calculate the phase 
shifts, particularly when we are obliged to make an approximation to begin with. The 
simple JWKB approximation has already been used to calculate the binding energies by 
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Arnold and Bates (1969). A generalised version of the JWKB method, first studied by 
Miller and Good (1953), and studied by a number of authors (Rosen and Yennie 
1964, Lu and Measure 1972, Wald and Lu 1974, Wald et a1 1975, and Berry and 
Mount 1972) has been found ideally suited for this purpose. The accuracy of this 
method has also been studied by Wald et a1 (1975). To summarise the method, let us 
assume that it is possible to write the radial equation as 

( 3 + Y ) G ( y ) = 0 .  d2 

Consider another equation 

which can be solved exactly. We shall call equation (4.2) a ‘model equation’ for the 
problem, provided tl(y) and f 2 ( s )  are similar in the following sense: 

(i) They should have the same number of turning points, i.e. for every real 
physical yf which makes tl(yf) = 0, there should be a real, physical sf giving 

(ii) The two functions t l ( y )  and t 2 ( s )  must have the same number of extrema. 
(iii) They should have similar behaviour near the respective singular points. 

t Z ( S , )  = 0. 

If these conditions are satisfied, one looks for a solution 

a y ) =  T(Y)WS(Y)l, (4.3) 
where s is considered as a function of y. Substituting the expression (4.3) in equation 
(4.1) and using (4.2), one gets the consistency conditions: 

and 

I2 T” 
s t 2 - t l = h 2 - .  T (4.5) 

Condition (4.4) is satisfied by the choice T = l/Jst. To satisfy. the second condition, 
we expand both s(y) and f 2 ( s )  in powers of h2 and consider terms up to a given order 
of h2. Thus, to the zeroth order in h2, the condition is 

which, on integration, gives 

ds = dy. (4.7) 

Bertocchi er a1 (1965), Lu and Measure (1972) and Wald and Lu (1974) have studied 
the higher-order terms in h2. Thus, to terms of order h2, the consistency condition is 

where p :  = t l (y)  and p ;  = f 2 ( s ) .  The integrands in the second term on each side are 
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divergent at the lower limit of integration. However, as has been pointed out by 
Bertocchi et a1 (1965), the divergences cancel out in the expression for the phase shift 
vmi. The point has been studied in detail by Wald and Lu (1974). If equations (4.1) 
and (4.3) both describe scattering phenomena, the phase shift corresponding to 
equation (4.1) can be determined, through the consistency condition, from the known 
phase shift corresponding to equation (4.2). The method has been applied to some 
simple cases by Wald and Lu (1974), and Wald et a1 (1975), and the results show fairly 
good agreement with exact results obtained otherwise. The next two sections will be 
devoted to the application of this method to the present problem. 

5. The choice of a model equation 

To study the semiclassical method of calculating the phase shifts, it will be useful to 
consider a specific example. Let us consider a target consisting of two point charges of 
strength Oe each, separated by a distance R. Applications to more realistic targets will 
be considered elsewhere. To write down the radial equation in the form (4.1), we 
eliminate the first-order derivative term by substituting 

Rmi(c, ()= (t2- 1)-1”2Gmi(C, t), (5.1) 
in the radial equation (2.19). This gives 

where 
2 1 -- t1(Y) - 

h2 y - c  Y - c  
( y 2  - h mi (c ) + 2by - (m 2 - (5.3) 

with y = c( and b = 2eaQ/P. Equation (5.2) is written in a form so that the limit c + 0 
(i.e. R -* 0) exists and can be taken easily. This corresponds to the scattering from a 
central charge of strength 2Qe and the relevant equation is 

where 

t 2 ( S )  2b 1(1+1) 
h2 S s2  . 
-- -I+--- ( 5 . 5 )  

The solution of equation (5.4) is well known. We would, therefore, like to examine 
the possibility of taking (5.4) as the model equation for our problem. We note the 
following: 

(i) In the asymptotic region, the solution Gmr(y) can differ from U&) only by 
some additional phase. Thus 

and 
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(ii) For 1 # 0, the function t 2 ( s )  has one real positive root, the classical turning 
point. The situation with t l ( y )  is more complicated. We find three different cases, 
depending on the value of m : 

For m = 1, the problem is similar to the central Coulomb case. 
For m > 1, the function tl(y) has four roots, we choose, as an example, b = 0.5 
and c = 0.3, to locate these roots. Since for c < 1, A,i(c)- I ( / +  l), it can be 
shown that only two of the roots are real and positive. There is, however, only 
one turning point, the other being less than c (note that y 3 c). Moreover, tl(y) 
has only one maximum beyond its turning point, just as in the corresponding 
central potential case. 

The two functions tl(y) and t 2 ( s )  have similar behaviour near their singular 
points. Thus, while the Coulomb function is dominated at the origin by the 
centrifugal term, the two-centre function is dominated near y - c by the 
‘geometric potential’ V, = (m2-  1)c2/(y2- c2p.  Both are repulsive inverse 
square potentials. 
The favourable situation no longer exists if m = 0. The term V,  now leads to 
an attractive inverse square potential near y - c  and it is well known that for 
I = 0, the solution for such a potential is not bounded at the singular point. The 
presence of the attractive singular term leads to some complication even for 
1 # 0. One gets, in general, two turning points, and the Coulomb equation 
cannot be considered a suitable model equation in this case. 

This difficulty can be removed if one introduces Langer’s substitution. The 
motivation for introducing this substitution is well studied (Bertocchi er a1 1965, Berry 
and Ozorio de Almeida 1973, Crothers 1976). A simple way to understand the 
motivation is to note that the JWKB method is based essentially on the classical picture 
of the motion of a particle in one dimension, where the variable has a spectrum of 
values from -CO to + CO. But the variable in the radial equation under consideration 
has a restricted range (for example, s in (5.4) has a range from 0 to CO). A correct 
correspondence can be established if a new variable (e.g. In s instead of s) is chosen 
and the phase relationship is obtained in terms of this new variable. For the two- 
centre problem, one has to introduce the variable z = In (y  - c) .  It is now easy to see 
that this substitution can cure the bad behaviour of the two-centre problem for m = 0. 
With Langer’s substitution, we have, for the two-centre function 

so that as y + c, 

l:(y)+( - @ q - + O ( & ) + .  1 . . . 
4 4 ( Y - C )  

(5.9) 

Thus the offensive inverse square term is cancelled by Langer’s counter-term when 
m = 0. Note that for m # 0, the inverse square singularity is not cancelled, but then the 
singular term changes sign to become a repulsive potential. 

If one introduces Langer’s substitution in tl(y), one must do the same in the 
corresponding Coulomb case, so that both the variables y and s have the same 
spectrum of values (-a to +a). This has the additional advantage that the altered 
Coulomb function h ( s )  for 1 = 0 now develops a real turning point, much to our 
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advantage. The altered Coulomb function is given by 

L 2b (I+$)’ 
r 2 ( s ) =  1 + - - ~ ,  

S S 
(5.10) 

when expressed in terms of the original variable s. It may be pointed out that with 
Langer’s substitution the relation (4.8) is slightly modified. The details will be given in 
another paper. 

When Langer’s substitution is made for m = 0 and any I ,  the function rk(y) retains 
only one real root (instead of two, as discussed earlier), thus eliminating the cumber- 
some procedure of matching across the turning point. Also, both &(y) and &(s) for 
m = 0 show only one maximum beyond the respective turning points. To summarise 
the situation, we may take the central Coulomb equation as a model equation 
provided Langer’s counter-term is added to both. When m # 0, the effect of Langer’s 
substitution will be small. Since we are actually determining the difference in the 
phase shifts, even this small effect will almost be cancelled out. It is, in fact, more 
convenient to work with the original set of equations and not to invoke Langer’s 
substitution unless necessary, as in the m = 0 case. We shall do the same in the next 
section. 

Although we analysed the functions tl(y) and t z ( s )  for the simple case of two fixed 
point charges and only for a certain range of values of b and c, some of the obser- 
vations are of more general validity. A realistic target will not give rise to a potential 
as singular as l / y 2  and hence the behaviour near the point y - c  will still be 
dominated by the V ,  term. The choice of a model equation will, however, depend on 
the nature of the problem. 

6. Phase shifts for scattering from two fixed point charges 

As in the previous section, we consider a target consisting of two fixed point charges 
with b = 0.5 and c = 0.3. To zeroth order in h2, the phase shifts can be obtained from 
relation (4.7), keeping the asymptotic behaviours (5.6) and (5.7) in mind. However, 
we shall have to extract the typical logarithmic phase term out of both sides of 
equation (4.7). This can be done in the following way. We choose a large y, say y’, for 
which the term (m’- 1) c2/(y2-c2)’ becomes negligible compared with the other 
terms. We can write 

The second term, in the limit y +coco, yields the logarithmic phase term. Thus for 
m # 0, we have 

rm1-g[=l im s - y + b l n -  
Y-tW ( Y s, 
s+m 

= JIO[ sin-’( 
J b 2 +  I ( /  + 1) 
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) - J F 2  + 2bj7 - A , ~ +  1’ Jtl(y) dy. (6.2) 
+ b l n (  s r + b  

Jq2+2bf-A,,,i+ y’+ b Y i  

0, the expression for U,,,[ -a: is obtained from (6.2) by replacing St by s), yr 
( y )  by t\(y) and 1(1+ 1) by (1 +;)’. The phase shifts uk can be obtained by 
the same method and are given by, up to terms of order h2,  

L b b  b 
u1 = b - ( I  ++) sin-’ ~ - 5  In p --, 

where 

p = b + ( 1  + ;)2 

To obtain (6.3), we compared the Coulomb radial equation with the free radial 
equation, after making the Langer substitution. The Coulomb phase shifts are, of 
course, known exactly, namely 

ui = arg T ( l +  1 -ib). (6.5) 

Thus, the accuracy of the present method can be checked by comparing (6.3) and 
(6.5). This has been done in table 1, where some phase shifts for b = 0.5 have been 
shown. It may be noted that the method reproduces accurately the Coulomb phase 
shifts, the agreement being excellent beyond 1 = 2. 

Table 1. Coulomb phase shifts: the exact phase shifts are given by ul and those calculated 
by the present method with Langer’s substitution by U: (b  = 0.5). 

1 

0 
1 
2 
3 
4 
5 
6 

10 
15 

+0.24406 
- 0.21959 
-0.46457 
-0.62972 
-0.75407 
-0.85374 
- 0.93688 
- 1.17606 
- 1,37059 

+0.23892 
-0.22003 
- 0.46464 
-0.62974 
-0.75408 
-0.85374 
-0.93688 
- 1.17606 
- 1,37059 

The knowledge of v1 now permits us to determine uml from the relation (6.2). We 
chose b = 0.5 and c = 0.3 and evaluated the integrals in (6.2) numerically. Some of 
these phase shifts, in the zeroth order, are shown in table 2. Some general features of 
the spheroidal phase shifts may be mentioned here: 

( a )  The phase shift difference uml - ( T I  falls off as 1 increases. Thus in the example 
considered, ul,l = -0.1940 and u1 = -0.2196, while u1,15 = - 1.3728 and u15 = 
- 1.3706. This fall is expected also on physical grounds since partial waves with large 
1 cannot probe the region near the origin in detail and are, therefore, insensitive to the 
deviation of the spherical symmetry caused by a small separation of the two charges. 

(6) The variation of the phase shifts with m is another novel feature of the 
two-centre problem. For a large 1 the phase shifts u,i are almost m independent and 
can be replaced by the central potential phase shifts ul. 
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Table 2. The spheroidal phase shifts (b = 0.5, c = 0.3). 

0 
1 
1 
2 
2 
2 
3 
3 
3 
3 

0 
0 
1 
0 
1 
2 
0 
1 
2 
3 

-0.213 
-0.043 
+0.026 
-0.015 
+ 0.003 

0.000 
- 0.008 

0.000 
- 0.001 
- 0.002 

+0.031 
-0.263 
-0.194 
- 0,479 
-0.462 
- 0.465 
-0.638 
- 0.630 
- 0.63 1 
-0.632 

In the above, we have not taken into account the first-order correction to the 
spheroidal phase shifts. The calculation for the correction term involves some tech- 
nical problems (see Wald et al 1975), which will be considered in a following paper. It 
may be pointed out that the simple JWKB method does not give the values of the 
spheroidal phase shifts as accurately as is obtained by the present method. The 
spheroidal phase shifts calculated up to the first-order term in A2 show a dependence 
on the choice of model equation. Naturally, one has to make the most appropriate 
choice for the model equation. The ordinary JWKB method involves the choice of a 
particular model equation for all problems and is, therefore, inadequate for the 
purpose. 

7. Discussion 

We can now summarise the method of solving the problem of high-energy electron 
scattering from a two-centre potential. If the potential is screened, the first step is to 
calculate the constants Aml(c), Nml(c) and the coefficients d,(clm, 1)  to the desired 
accuracy. The phase shifts vml are determined by the semiclassical method, taking a 
suitable and solvable model equation. The averaged total cross section is then given 
by (3.4). To obtain the differential scattering cross section, the averaging must be 
done numerically. For unscreened potentials, the phase shifts vm/, however, approach 
a!, the corresponding central Coulomb phase shifts, as 1 increases and, beyond a 
certain value of I ,  one can safely replace vm/ by v~. The semiclassical method used to 
calculate the phase shifts presents a convenient tool to calculate, with remarkable 
simplicity, the phase shifts for those cases where conventional direct methods are not 
useful. It is hoped that a variety of non-spherical potentials which appear in various 
branches of physics, can be studied with this technique. We shall consider some of 
these in a future publication. 
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